A SYNTHESIS OF (S,S)-(+)-GRAHAMIMYCIN A₁

Dario Ghiringhelli

Dipartimento di Chimica del Politecnico di Milano, Centro del C.N.R. di Studio delle Sostanze Organiche Naturali. Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.

<u>Summary</u>: The preparation of (5)-1-(1,3-dithian-2-yl)-2-hydroxypropane <u>3</u> and its transformation into <math>(5,5)-(+)-grahamimycin A₁, through intramolecular pinacolic coupling of dialdehyde <u>9</u>, are described.

Among the few known members of natural asymmetric macrodiolides¹⁾, grahamimycin A_1^{2} <u>1</u> is unique for its antibiotic activity and the presence of the 1,2-diketo group.

The synthesis of grahamimycin A_1 was planned, when the sole constitution was known, with three purposes in mind: to search for a new, easy to make, chiral building block especially fitting the synthetic scheme; to prove the stereochemistry of natural grahamimycin A_1 ; to form the macrocycle by making the bond between the two carbon atoms which should bear the 1,2-diketo group in grahamimycin A_1 .

The scheme illustrating the synthesis of (S,S)-(+)-grahamimycin A₁ and the table with yields, conditions and properties show that all purposes were reached.

Fermenting baker's yeast efficiently reduces 1,3-dithian-2-yl-acetone³⁾ $\underline{2}$ to (S)-l-(1,3-dithian-2-yl)-2-hydroxypropane $\underline{3}$ of more than 99% enantiomeric purity, as proved by two independent methods⁴⁾. CH_3

1

The synthetic correlation of <u>3</u> with (S,S)-(+)-grahamimycin A₁ demonstrates that natural (-)-grahamimycin A₁ has a <u>cis</u> relationship between the methyl groups and the (R,R) sense of chirality. The same result was recently reported¹⁾ while this work was in progress.

The idea of making the macrocycle by a C-C bond forming, seemed particularly advantageous for two reasons: first of all the two ester groups present in grahamimycin A_1 could be formed separately, avoiding the need for selective protection and deprotection of carboxyls and hydroxyls;

secondly the formation of the C-C bond could give directly the 1,2- diketone or something easy to be transformed into the 1,2-diketone group.

Three kinds of reactions were examined as possible ways of intramolecular cyclization: the coupling of acyl chlorides into 1,2-diketones promoted by $\text{SmJ}_2^{5)}$, the acyloin coupling of aldehydes catalized by thiazolium salts⁶⁾ and the pinacolic coupling of aldehydes promoted by low valent titanium species⁷⁾.

The first two possibilities were discarded because SmJ₂ was ineffective in cyclizing dodecan-

dioic acid dichloride and similarly dodecandial was not cyclized by N-lauryl-thiazolium bromide^{6a)} nor by 3-benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride^{6b)}.

Better results were obtained by the reductive pinacolic coupling. In fact dodecandial was cy-

Table of physical properties, yields and reaction conditions. All products show IR, NMR and MS spectra consistent with reported structures. Compounds 5b, 8, 10 have correct elemental analyses.

- <u>3</u>: b.p. $105^{\circ}/0.1$ mm, $|\alpha|_{D}^{20} = 24.7^{\circ}(C = 2.0, CHCl_{3})$; 18.2g (90%) from 20g of <u>2</u> by 500g of fermenting baker's yeast, 100g sucrose and 25g Na₄P₂O₇ in 1500ml of water, 28°C, 4h; 99% pure by GLC on column A¹⁰.
- <u>4</u>: b.p. $87^{\circ}C/25mm$, $|\alpha|_{D}^{20} = -13.1^{\circ}(C = 1.1, CHCl_{3})$; 4.7g (70%) from 9.0g of <u>3</u> in 25ml CH₃OH with PbO₂ and BF₂⁹⁾, 20°C, 2h; more than 99% pure by GLC on column B¹⁰⁾.
- 5a: dense oil; 17.0g (95%) from 9.2g of methyl 4-oxobutanoate and 1,3-propandithiol with BF3.
- 5b: m.p. 87-88°C; 14.2g (90%) from 16.7g of 5a by treatment with 1.1 equivalent of a 2N solution of NaOH in EtOH/H₂O (3/1), 20°C, 18h.
- 6a: dense oil; 5.4g (87%) from 2.8g of <u>4</u> and <u>5c</u> (obtained from 4.1g of <u>5b</u> with oxalyl chloride) in benzene and pyridine, 0°C, 18h.
- <u>6b</u>: oil; 3.9g (85%) from 5.4g of <u>6a</u> in CH₂COOH/H₂O (4/1), N₂atmosphere, 80°C, 0.5h.
- <u>7</u>: m.p. 143-144°C, |α|_D²⁰ = -5.3°(C = 2.0, CHCl₃); 33.0g (88%) from 12.9g of <u>3</u>, 1.1 eq. of pyridine and BrCH₂COBr in benzene, 0°C, 16h, and subsequent reaction with Ph₃P in benzene.
 <u>8</u>: dense oil, |α|_D²⁰ = 0.0°(C = 1.3, CHCl₃); 1.8g (80%) from 1.3g of <u>6b</u> and the ylide from 3.1g of <u>7</u>, in benzene, 20°C 16h.
- 9: dense oil, $|\alpha|_D^{20} = -18.7^{\circ}(C = 1.0, CHCl_3)$; 0.9g (80%) from 1.8g of 8 with PbO₂ and BF₃ in THF/H₂O (5/1), 20°C, 3h, N₂ atmosphere; more than 95% pure by GLC on column C¹⁰⁾.
- 10: waxy solid; 50mg (35%) from 140mg of 9 in 15ml of THF added during 5h to a refluxing suspension obtained from 1.0g of Zn-Cu and 0.55ml of TiCl₄ in 20ml of THF in an argon atmosphere; the GLC on column C¹⁰⁾ shows the presence of 4 diastereomers in a 2:8:8:1 ratio.
- 11: (S,S)-grahamimycin A₁ (data of natural product from ref.2 in brackets): m.p. 91°C |91-92|; | $\alpha|_D^{20}$ = 14.8°(C = 0.3, CHCl₃)|-14.7|; UV(EtOH): λ = 428nm, ε = 22 |426/16|; ¹³C-NMR(CDCl₃) 19.8|19.9|, 20.6|20.7|, 28.4|28.5|, 31.3|31.5|, 38.2|38.3|, 39.5|39.7|, 68.7|68.9|, 70.5 |70.6|, 123.5|123.7|, 144.8|144.9|, 164.3, 171.0, 196.3, 197.1 ppm; 15mg (20%) from 74mg of 10 with PDC in DMF, 4°C, 20h; the GLC analysis on column C¹⁰⁾ shows the presence of a single peak while the GLC of the corresponding product obtained by the same sequence of reactions starting with racemic 3 and 4 shows two peaks of equal intensity for the two expected diastereomers.

clized in a 70% yield into a three to one mixture of cis- and trans-1,2-cyclododecandiol⁸⁾ by a reaction medium prepared by reduction of $TiCl_4$ with a zinc-copper couple in refluxing THF.

The new chiral building block 3 was converted into the phosphonium bromide 7 by reaction with bromoacetylbromide and than with triphenylphosphine and into the aldehyde $\underline{6b}$ through trans-acetalization, esterification with the acyl chloride $\underline{5c}$ and hydrolysis of the acetal group. The aldehyde $\underline{6b}$ and the phosphorane from 7 were joined to give the trans alkene 8. Oxidative hydrolysis⁹⁾ of the two dithiane groups of 8 led to the dialdehyde 9.

When the dialdehyde <u>9</u> was subjected to pinacolic coupling the cyclic diol <u>10</u> was obtained in a 35% yield. The oxidation by pyridinium dichromate of <u>10</u> gave a product having physico-chemical properties identical with those reported for natural grahamimycin A_1 (except for the sense of rotation), and for synthetic (S,S)-(+)-grahamimycin $A_1^{(1)}$.

Aknowledgment: the author is indebted to Mrs. Rosanna Bernardi for GLC analyses.

REFERENCES AND NOTES

- 1 W.Seidel and D.Seebach, Tetrahedron Lett. 23, 159(1982).
- 2 R.C.Ronald and S.Gurusiddaiah, Tetrahedron Lett. 681(1980).
- 3 D.L.Coffen, K.C.Bank and P.E.Garret, J. Org. Chem. 34, 605(1969).
- 4 <u>Method 1</u>: the alcohol <u>3</u> was acylated with acetic anhydride and pyridine, the dithiane group was oxidatively hydrolyzed with PbO₂ and BF₃⁹⁾ and the resulting 3-acetoxybutanal reduced by LAH to (S)-1,3-butandiol $|\alpha|_D^{20} = 29.0^{\circ}(C = 1, EtOH); |\alpha|_D = 29^{\circ}$ was reported for (S)-1,3butandiol (H.Gerlach, H.Oertle and A.Thalmann, Helv. Chim. Acta <u>59</u>, 755(1976)). <u>Method 2</u>: (R)-(+)- α -methoxy- α -trifluoromethylphenylacetate of <u>3</u> and of the racemate were made and their ¹H-NMR compared in presence of Eu(fod)₃(S.Yamaguchi, F.Yasuhara and K.Kabuto, Tetrahedron <u>32</u>, 1363(1976)). Only the signal from the OMe group of the (R,S)- diastereomer was present in the spectrum of (R)-(+)-MTPA ester of <u>3</u>. The GLC analysis on column C¹⁰⁾ shows two peaks for the (R)-(+)-MTPA ester of the racemic alcohol and only one peak for the (R)-(+)-MTPA ester of <u>3</u>.
- 5 P.Girard, R.Couffignal and H.B.Kagan, Tetrahedron Lett. 22, 3959(1981).
- 6 a) W.Tagaki and H.Hara, J.C.S.Chem.Com. (1973), 891.

b)H.Stetter, R.J.Rämsch and H.Kuhlman, Synthesis (1976), 733.

- 7 E.J.Corey, R.L.Danheiser and S.Chandrasekaran, J. Org. Chem. 41, 261(1976).
- 8 V.Prelog and M.Speck, Helv. Chim. Acta 38, 1786(1955)
- 9 D.Ghiringhelli, Synthesis (1982), 580.
- 10 GLC analyses were carried out on: DANI 3800 (FID) using 2m x 3mm Pyrex columns packed with: <u>column A</u> - 5% SP1000 on 100-120 Supelcoport; <u>column B</u> - 10% UCC-W-982 on 100-120 Chrom. W-DMCS; C.ERBA Fractovap 4160(FID), <u>column C</u> - 25m WCOT glass capillary OV-1 film, 0.4µm th. (Received in UK 5 November 1982)